
Research Paper

Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling—A New
Classification of Biomarkers*

Meindert Danhof,1,6 Gunnar Alvan,2 Svein G. Dahl,3 Jochen Kuhlmann,4 and Gilles Paintaud5

Received June 23, 2004; accepted May 3, 2005

Abstract. In recent years, pharmacokinetic/pharmacodynamic (PK/PD) modeling has developed from

an empirical descriptive discipline into a mechanistic science that can be applied at all stages of drug

development. Mechanism-based PK/PD models differ from empirical descriptive models in that they

contain specific expressions to characterize processes on the causal path between drug administration

and effect. Mechanism-based PK/PD models have much improved properties for extrapolation and

prediction. As such, they constitute a scientific basis for rational drug discovery and development. In this

report, a novel classification of biomarkers is proposed. Within the context of mechanism-based PK/PD

modeling, a biomarker is defined as a measure that characterizes, in a strictly quantitative manner, a

process, which is on the causal path between drug administration and effect. The new classification

system distinguishes seven types of biomarkers: type 0, genotype/phenotype determining drug response;

type 1, concentration of drug or drug metabolite; type 2, molecular target occupancy; type 3, molecular

target activation; type 4, physiological measures; type 5, pathophysiological measures; and type 6, clinical

ratings. In this paper, the use of the new biomarker classification is discussed in the context of the

application of mechanism-based PK/PD analysis in drug discovery and development.

KEY WORDS: genotype; molecular target activation; molecular target occupancy; pathophysiological
measures; physiological measures.

INTRODUCTION

The application of pharmacokinetic /pharmacodynamic
(PK/PD) modeling in drug development is well established.

The primary objective of PK/PD modeling is prediction of
the time course of the drug effect in vivo in health and disease.
As such, PK/PD modeling constitutes the scientific basis for
optimization of the dosing and the delivery profile of new
and existing drugs in phase 2 clinical trials. Furthermore,
PK/PD modeling is also widely applied as the basis for the
design and the evaluation of phase 3 clinical trials (1).

PK/PD modeling is increasingly applied in drug discovery
and preclinical development. Specific applications include
a) the selection of drug candidates with the most favorable
pharmacokinetic and pharmacodynamic properties and b) the
prediction of exposure response in humans with the aim to
optimize the design of (early) clinical trials. The use of PK/PD
modeling in this context relies on prediction of the time course
of drug effect in man, using information from nonclinical in-
vestigations. Not surprisingly, there is a clear trend toward
the development of mechanism-based PK/PD models, which
have much improved properties for extrapolation and pre-
diction. This concerns the extrapolation and prediction 1)
from in vitro test systems to the in vivo situation, 2) from
in vivo animal studies to humans, and 3) from healthy vol-
unteers to patients, and 4) the prediction of intra- and inter-
individual variability in drug effects.

Mechanism-based PK/PD models differ from empirical
descriptive models in that they contain specific expressions to
characterize, in a strictly quantitative manner, processes on
the causal path between drug administration and effect. This
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includes 1) the target site distribution, 2) the target interac-
tion and activation, 3) the transduction, and, finally, 4) the
influence of in vivo homeostatic feedback mechanisms. Ulti-
mately, mechanism-based PK/PD models will also consider
the effects on 5) disease processes.

In the following paragraphs, the principle of mechanism-
based PK/PD modeling is reviewed and discussed. It is
shown that not only mechanism-based PK/PD modeling
depends on the use of biomarkers, but that at the same time
mechanism-based PK/PD modeling also constitutes a scien-
tific basis for the selection and evaluation of novel bio-
markers in drug discovery and (early) drug development.

MECHANISM-BASED PK/PD MODELING

Target Site Equilibration

An important factor in mechanism-based PK/PD model-
ing is the distribution between blood plasma and the target
site in peripheral tissues. In PK/PD modeling, biophase equili-
bration is usually characterized on the basis of an effect com-
partment model, on the assumption that in steady state, the
drug concentration in the biophase is identical to the free
plasma concentration (2). This assumption, however, is not
always valid. In theory, the target site equilibration of drugs
depends on 1) the target site delivery (blood flow, plasma
protein binding) and 2) the target site distribution (filtration,
diffusion, functionality of transporters). Particularly for rela-
tively large hydrophilic molecules and for compounds that
are substrates for specific transporters, target site distribution
is restricted. This is particularly important for drugs with an
intracellular target (i.e., cytostatic drugs) or drugs that act in
tissues that are protected by specific barriers (i.e., the central
nervous system). Recently, several specific transporters have
been discovered that may restrict the access of a drug to the
site of action (3). Furthermore, increased expression of such
transporters may explain loss of efficacy, as exemplified by
drug resistance in cancer chemotherapy (4). This underscores
the need for measures of target site exposure (drug and
metabolite concentration) as biomarkers in mechanism-based
PK/PD modeling. A novel technique to obtain information
on the target site exposure in the central nervous system is
intracerebral microdialysis. An example of the application
of intracerebral microdialysis is in the investigations on the
PK/PD correlation of morphine, where P-glycoprotein and
possibly other transporters restrict the distribution into the
central nervous system (5).

Target Interaction and Activation

Descriptive PK/PD models mostly use empirical models
such as the Hill equation to describe drug concentra-
tionYeffect relationships in vivo. A limitation of the applica-
tion of the Hill equation is that it provides only limited
insight into the underlying factors that determine the shape
and the location of the concentrationYeffect curve. Specifi-
cally, the potency (i.e., the EC50) and the intrinsic activity
(i.e., maximal effect, Emax) of a drug are functions of
compound-specific (i.e., receptor affinity and intrinsic effica-
cy) and system-specific properties (i.e., the receptor density
and the function relating receptor occupancy to pharmaco-

logical effect). Classical receptor theory explicitly separates
drug-specific properties and system-specific properties as
determinants of the drug concentrationYeffect relationship
(6) and therefore constitutes a theoretical basis for the pre-
diction of this relationship.

Not surprisingly, receptor theory is increasingly applied
in mechanism-based PK/PD modeling to explain and predict
(variability in) in vivo drug concentrationYeffect relationships

(7). In the meantime, receptor theory has successfully been
incorporated in mechanism-based PK/PD models of A1

adenosine receptor agonists (8), OP3 opioid receptor agonists
(9), 5-HT1A serotonin receptor agonists (10) and GABAA

receptor agonists (11). The studies on the hemodynamic and
the antilipolytic effects of A1 adenosine receptor agonists in
rats demonstrate the concept of partial receptor activation as
a mechanism to improve the selectivity of action in vivo (12).
The utility of mechanism-based PK/PD modeling in inter-
species extrapolation of drug effects is illustrated in the pre-
diction of the pharmacodynamics of the anesthetic opioid
remifentanil and its active metabolite GI 90291 in humans
based on information from rats (13). Moreover, in a recent
PK/PD study, the influence of receptor knock down on the
in vivo concentrationYeffect relationship of alfentanil was
analyzed, illustrating the importance of receptor expression
as a determinant of intra- and interindividual variability in

in vivo concentrationYeffect relationships (14).

Transduction

Transduction refers to the processes of the translation
of the receptor activation into the ultimate pharmacological
response. Specifically, the binding of a drug to a biological
target initiates a cascade of biochemical and/or electrophysi-
ological events resulting in the observable biological response.
For most receptors (i.e., G-protein-coupled receptors), phos-
pholipases (i.e., 1,4,5-inositol triphosphate, diacylglycerol)
and nucleotide cyclases (i.e., cAMP) serve as second
messengers. For other receptors (i.e., glucocorticoid recep-
tors), transduction is mediated through an interaction with
DNA, thus regulating the expression of second messengers,
proteins, or enzymes. For some drugs (i.e., antidepressants),
the molecular mechanisms underlying transduction are
complex and still poorly understood.

There can be wide differences in the rates at which the
various transduction processes occur in vivo. In many in-
stances, transduction is fast (i.e., operating with rate con-
stants in the range of milliseconds to seconds), relative to the
rate constants governing the disposition processes (typically
minutes to hours). In that situation, the transduction pro-
cess determines the shape and the location of the in vivo

concentrationYeffect relationship (6,7), but it does not
influence the time course of the drug effect relative to the
plasma concentration. In contrast, transduction in vivo can
also be slow, operating with rate constants in the order of
hours to days, in which case transduction becomes an im-
portant determinant of the time course of drug action.

As an approach to account for a delay of the drug ef-
fect relative to the concentration, a family of four indirect-
response models has been proposed (15). In these models, the
drug effect is described as stimulation on or inhibition of the
factors controlling either the input or the dissipation of drug
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response in a direct concentration-dependent manner. In these
models, the rate constants for the input and the dissipation
of the drug response are the important, system-specific
parameters governing the time course of the drug response.
In the meantime, numerous useful applications of various
forms of the indirect response model have been reported (16).

As a next step in the modeling of complex transduction
mechanisms, models have been proposed in which transduc-
tion is modeled mechanistically on the basis of intermediary
processes between pharmacokinetics and response. In terms
of mathematical modeling, the so-called transit compartment
model has been proposed. This model relies on a series of dif-
ferential equations to describe the cascade of events between
receptor activation and final response (17). Well-known
examples of applications of this type of modeling are the
modeling of the genomic effects of corticosteroids (18) and
the modeling of hematologic toxicity in cancer (19). The
transit compartment model is attractive because of its flexi-
bility, but for it to become fully mechanistic, pertinent infor-
mation on the processes on the causal path is required. This
underscores the need for biomarkers to characterize trans-

duction mechanisms.

Homeostatic Feedback

Apart from being able to describe a delay in the phar-

macological response relative to the drug concentration in
plasma, there is a growing need for methods to describe and
predict complex pharmacological effect vs. time profiles.
Such complex profiles may be observed when drug exposure
leads to tolerance/sensitization or when homeostatic feed-
back mechanisms are operative. An example of a model to
describe complex effect vs. time profiles is the so-called
Bpush-and-pull^ model. Because of its plasticity, the push-
and-pull model could be successfully applied to describe
tolerance to the diuretic response on repeated administra-
tion of furosemide (20).

Another example of a PK/PD model describing tolerance

is the Bprecursor pool^ model. The precursor pool model can
conceptually be considered a description of a tachyphylactic
system and has been successfully applied to describe the ef-
fects of neuroleptic drugs on the prolactin balance (21).

Attempts to model physiological counterregulatory mech-
anisms have resulted in a series of advanced models describing
complex behavior. These models are in part based on the work
by Ekblad and Licko (22). An example is the model proposed
by Bauer et al. to characterize tolerance to the hemodynamic
effects of nitroglycerin in experimental heart failure (23). In
the meantime, this type of physiological counterregulatory
effect model has been successfully applied to describe
tolerance and rebound to the effects of drugs such as
alfentanil and omeprazole (24Y26). Moreover, a dynamical
systems model has been proposed, which can account for the
complex hemodynamic effects of arterial vasodilators (i.e.,
nifedipine) for which rate of administration is a major deter-
minant of the effects (27,28).

The most recent development in the incorporation of
dynamical systems analysis in PK/PD modeling was the
conceptualization of the so-called set point model (29). This
model was designed to describe complex effect vs. time
profiles of the hypothermic response after the administration

of 5-HT1A receptor agonists to rats. In this model, the in-
direct physiological response model is combined with a
thermostat-like regulation of body temperature. Specifically
in the model, body temperature and set point temperature
are interdependent through a feedback loop. A unique fea-
ture of this feedback loop is that it can give rise to oscillatory
behavior, allowing characterization of the complex hypother-
mic response vs. time profiles that are often observed on
administration of 5-HT1A agonists.

Disease Processes

At present there is a growing interest in the develop-

ment of disease progression models, which are particularly

important for drugs that interact in a highly specific manner

with the disease process and that may have no direct observ-

able effects in healthy subjects. Furthermore, application of

disease progression analysis is imperative when drug treat-

ment is specifically intended to modify disease progression.
Chan and Holford (30) and Holford and Peace (31) were

among the first to propose disease-progression models for

clinical rating scales. In these models, the signs and/or symp-

toms of disease and their response to treatment are modeled

directly, without consideration of the underlying biological

system. Such a descriptive approach is applicable when only

information on clinical symptoms or outcome is available.

However, if relevant biomarkers have been identified, a

more detailed and mechanistic description of disease pro-

gression can be obtained. Recently, a theoretical framework

for mechanism-based disease progression models has been

proposed (32). In the meantime, steps have been taken

toward the application of such mechanistic models for the

effects of thiazolidinedione insulin-sensitizing agents (i.e.,

pioglitazone) in type 2 diabetes mellitus, using biochemical

indices such as fasting plasma glucose concentration, plasma

insulin and split proinsulin concentrations, and percent
glycosylated hemoglobin (HbA1C) as biomarkers (de Winter

et al., unpublished observations).

BIOMARKERS AND PK/PD MODELING

There is an increasing interest in the use of biomarkers in

drug development as reflected in the various review papers

and commentaries that have recently appeared on this subject

(33Y37). Much of the discussion on biomarkers focuses on

their validity and validation as surrogate endpoints for the

clinical effects of a drug, particularly within the context of

regulatory decision making (35). It should be realized, how-

ever, that the use of biomarker information for regulatory

decision making is restricted to drugs with a specific mecha-

nism of action and a well-established clinical effect where

relatively rich information is available on the relationship

between the biomarker responses vs. the clinical response.

For most drugs, such information is lacking. Furthermore,

for innovative products, the pertinent information becomes

available at the earliest at the completion of phase 3 clinical

trials. As a result, the use of information on biomarkers for

regulatory decision making is generally of limited value,

particularly for innovative products with novel mechanisms

of action.
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Recently, in publications by Peck and Wechsler (38) and
Peck et al. (39), the concept of Bcausal-chain biomarkers^ has
been proposed within the context of use for confirmatory
evidence. Here the underlying concept is again the extrapo-
lation of drug effects from a biomarker to clinical effective-
ness. Key factors in this respect are the strength of clinical
data in studies of other drugs in a class or related diseases
that share a similar action or disease mechanism (36).

In this contribution, we take the use of biomarkers for-
ward toward research aiming at understanding and mathe-
matical modeling of the functioning of the integral biological
system in vivo. Thus, here we discuss the use of biomarkers
in the context of biological systems analysis aiming at the
prediction of drug effects in man. This is important in
drug discovery and development, particularly in relation to
extrapolation and prediction within the trajectory from target
identification (in vitro and in in vivo animal studies) to proof
of concept (in phase 2 clinical trials). Specifically, it is pro-
posed that within this paradigm, biomarkers can also be of
value in the development of drugs acting at novel targets,
where the link with clinical effectiveness has not yet been
demonstrated.

As was outlined above, the use of PK/PD modeling has
in recent years progressed from empirical to mechanism-
based models. Mechanism-based PK/PD models contain
specific expressions for processes on the causal path between
drug administration and response and have much improved
properties for extrapolation and prediction. In a strict sense,
mechanism-based PK/PD modeling is identical to biological
systems analysis.

The concept of mechanism-based PK/PD modeling adds
a novel dimension to the selection, evaluation, and validation
of biomarkers, with a strong emphasis on Bconstruct validity^
as defined by Rolan (40). Within the context of mechanism-
based PK/PD modeling, we define a biomarker as a measure
that characterizes, in a strictly quantitative manner, a process,
which is on the causal path between drug administration and
effect. In this respect, a 7-point mechanistic classification
scheme is proposed based on the location of the biomarker
in the chain of events from underlying subject genotype or
phenotype through to clinical scales (Table I). The proposed
division into seven levels is logical in mechanistic terms, in
the sense that it reflects the major intermediate steps in
pharmacodynamics. An important point is that it is not always
necessary to obtain information on each of the intermediate
steps. The principle of parsimony can be (and in fact often is)
applied in mechanism-based PK/PD modeling. For different
drugs and/or modes of administration, different types of
biomarkers may be more or less readily available (39).

Within the proposed classification, a type 0 biomarker
refers to genotype and/or phenotype as a determinant of the

drug response. This may be related to either a factor in the
disposition of the drug that determines the target exposure
(i.e., the expression of a specific enzyme or transporter) or a
factor determining the response directly (i.e., the expression
of a specific receptor). In a strict sense, a type 0 biomarker is
traditionally considered a covariate rather than a biomarker.

A type 1 biomarker refers to the concentration of the
drug and/or a drug metabolite. As such, drug concentrations
in blood or blood plasma serve as useful and probably the
most widely used biomarkers in drug development. Ulti-
mately, however, one is specifically interested in the (free)
target site concentration. Because for most drugs the target is
located in peripheral tissue, free target site concentrations
may not be readily accessible. Novel technologies (including
microdialysis) may offer new opportunities for quantification
of drug concentrations at the target site (5).

A type 2 biomarker refers to the target occupancy. In
theory, drug effects may occur at different degrees of target
occupancy. Information on the relationship between target
occupancy and response is therefore important for the pre-
diction of in vivo concentrationYeffect relationships (6,7) and
for the understanding of intra- and interindividual variability
in drug response (14). Neuroleptic drugs are an example where
the relationship between receptor occupancy and therapeu-
tic response is particularly well established (41). For certain
drugs, information on the degree of target occupancy can be
obtained on the basis of ex vivo bioassays (42). Alternatively,
novel imaging techniques (i.e., positron emission tomography
scanning) open new avenues for the assessment of in vivo

target occupancy, provided that a suitable and specific ligand
is available (41).

A type 3 biomarker refers to quantification of the target
site activation. According to receptor theory, this target site
activation is determined by the intrinsic efficacy of the drug
in combination with the level of receptor expression in the
target tissue (6,7). It has been demonstrated that differences
in target site activation can be an important determinant of
tissue selectivity of drug action (12). An example of type 3
biomarkers is quantitative electroencephalogram (EEG) pa-
rameters, which have been validated as biomarkers charac-
terizing GABAA receptor activation in vivo (11). Likewise,
for synthetic opioids, quantitative EEG parameters have
been proposed as biomarkers reflecting OP3 opioid receptor
activation (8). Interestingly, in a series of investigations in
healthy volunteers, evidence for the validity of quantitative
EEG parameters as a surrogate for depth of anesthesia has
been obtained (43Y45).

A type 4 biomarker refers to physiological measures in the
integral biological system. Hemodynamic variables characteriz-
ing the in vivo effects of drugs with an action on the car-
diovascular system are probably among the most well known
examples of type 4 biomarkers. An important feature of type 4
biomarkers is that the biomarker response is often influenced
by in vivo homeostatic control mechanisms. The utility of the
application type 4 biomarkers in phase 1/2 clinical investigations
is amply illustrated in the studies on nifedipine, where rate of
administration was found to be an important determinant of the
cardiovascular effect (27). This provided a scientific basis for
the design of novel sustained-release preparations with not only
a prolonged duration of action but, more importantly, also a
much improved selectivity of action.

Table I. Mechanistic Classification of Biomarkers

Type 0: Genotype or phenotype

Type 1: Concentration of drug and/or metabolite

Type 2: Target occupancy

Type 3: Target activation

Type 4: Physiological measures or laboratory tests

Type 5: Disease processes

Type 6: Clinical scales
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Type 5 biomarkers are parameters that characterize
in quantitative manner disease processes. Examples are bio-
markers characterizing inflammatory processes or type 2 dia-
betes mellitus. Recently, ex vivo PGE2 and thromboxane B2

inhibition have been proposed as biomarkers in the develop-
ment of COX inhibitors (46). The utility of disease biomarkers
in drug development is illustrated in the recent investigations
on mechanism-based modeling of type 2 diabetes mellitus
showing the beneficial effects on disease progression of met-
formin and thiazoledinedione insulin-sensitizing agents (de
Winter et al. unpublished observations).

Finally, type 6 biomarkers are clinical scales. In a strict
sense, these biomarkers can be regarded as clinical endpoints
rather than biomarkers per se. The utility of clinical scales as
pharmacodynamic endpoints in PK/PD modeling is illustrat-
ed in the modeling of disease progression of neurodegenera-
tive diseases (i.e., Parkinson’s disease, Alzheimer’s disease)
(30,31).

CONCLUSION

A new classification of biomarkers is proposed that is
based on the mechanism of drug action and, ultimately, in the
ideal situation, the interactions with the disease process. This
classification is useful in reducing disagreement on the
potential impact or role of a biomarker in drug discovery
and development (33). In this respect, it is important that
biomarkers in many instances do not reliably predict clinical
response and may therefore not qualify as a surrogate marker
(31). The concept of mechanism-based PK/PD modeling,
however, brings an entirely new dimension to the prediction
of drug response because it constitutes a basis for better
understanding of the biological system of interest providing
a basis for extrapolation and prediction.

The proposed classification of biomarkers into seven
levels is particularly useful in conjunction with the concept of
mechanism-based PK/PD modeling. As was outlined above,
mechanism-based PK/PD models contain specific expressions
for processes on the causal path between drug administration
and response and typically have much improved properties for
extrapolation and prediction. Biomarkers constitute a basis
for the characterization, in a strictly quantitative manner, of
processes on the causal path between drug administration and
response. This allows in principle the development of cas-
cading models in which the effect of drugs from one process
in the chain of events to the next can be described (Fig. 1).
This is important because the relationships between the var-
ious processes depend solely on the functioning of the bio-
logical system and are therefore independent of the drug.
Mechanism-based PK/PD modeling constitutes, therefore,
the scientific basis for prediction of the ultimate clinical ef-
fects of novel drugs based on a biomarker response. Further-

more, studies on biomarker responses can provide the basis
for the understanding, in mechanistic terms, and the predic-
tion of variability in drug response. Ultimately, after proper
validation, such biomarkers might be used in clinical practice
in the individualization of drug treatment.

Thus, biomarkers are invaluable for the development and
application of mechanism-based PK/PD modeling in drug
development. At the same time, however, mechanism-based
PK/PD modeling constitutes also a scientific basis for the se-
lection, evaluation, and validation of biomarkers, particularly
in nonclinical investigations. This is illustrated in investiga-
tions on the effects of GABAA receptor agonists in rats. On
the basis of the observed in vitro/in vivo correlation, ampli-
tude in the 11.5- to 30-Hz frequency band of the EEG was
validated as a biomarker reflecting in a direct quantitative
manner modulation of GABA-ergic inhibition in vivo (11).
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